Experimental Investigation of the Alumina/Paraffin Thermal Conductivity Nanofluids with a New Correlated Equation on Effective Thermal Conductivity

نویسندگان

  • Afrasiab Raisi Faculty of Engineering, Shahrekord University, Shahrekord, Iran
چکیده مقاله:

Liquid paraffin as a coolant fluid can be  applied in electronic devices as a result to its suitable capabilities such as electrical insulating, high heat capacity, chemical and thermal stability, and high boiling point. However, the poor thermal conductivity of paraffin has been confined its thermal cooling application. Addition of high conductor nanoparticles to paraffin can fix this drawback properly. In this article, the influence of the nanoparticles on the thermal conductivity of base material was assessed. Temperature (20-50°C) and volume fractions (0-3%) effect on the thermal conductivity of paraffin/alumina nanofluids have been considered. Nanofluid samples were prepared applying the two-step method. The thermal conductivity was measured by a KD2 pro instrument. The results indicated the thermal conductivity augments smoothly with an increase in volume fraction of nanoparticles as well as temperature. Moreover, it observed that for nanofluids with more volume-fraction the temperature affection is more remarkable. Thermal conductivity enhancement (TCE) and effective thermal conductivity (ETC) of the nanofluid was calculated and new correlations were reported to predict the values of them based on the volume fraction of nanoparticles and temperature of nanofluid accurately.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal Conductivity of Nanofluids

Nanofluids are suspensions of nanoparticles in base fluids, a new challenge for thermal sciences provided by nanotechnology. Nanofluids have unique features different from conventional solid-liquid mixtures in which mm or μm sized particles of metals and non-metals are dispersed. Due to their excellent characteristics, nanofluids find wide applications in enhancing heat transfer. Research work ...

متن کامل

Experimental Investigation on the Thermal Conductivity and Viscosity of ZnO Nanofluid and Development of New Correlations

In this paper, the measurement of the viscosity of ZnO in ethylene glycol, propylene glycol, mixture of ethylene glycol and water (60:40 by weight), and a mixture of propylene glycol and water (60:40 by weight) and the thermal conductivity in ethylene glycol and propylene glycol as base fluids in the range of temperature from 25 ºC to 60 ºC are investigated. The results indicate that as the tem...

متن کامل

Experimental investigation on the thermal conductivity of Triethylene Glycol-Water-CuO nanofluids as a desiccant for dehydration process

Liquid desiccants such as glycols are used in dehydration process, among which Triethylene Glycol (TEG) is considered as a common choice. The addition of nanoparticles to TEG as the base fluid is one of the prevalent method to improve thermal properties of TEG. In this study, an experimental investigation was performed on thermal conductivity of TEG-based nanofluids with 20 and 40 nm diameter c...

متن کامل

Effect of Functionalization Process on Thermal Conductivity of Graphene Nanofluids

   In this research, Graphene was synthesized by chemical vapor deposition (CVD) method in atmosphere pressure (14.7 psi). Different functionalization method was used for oxidizing of graphene such as acid and alkaline treatments. The Functionalized graphene (FG) was characterized by FTIR and Raman spectroscopy. Nanofluid with water and different concentration (0.05, 0.15 and 0.25 wt %) of ...

متن کامل

Experimental investigation of relative thermal conductivity of MWCNTs-CuO/Water nanofluids

 This work presents a model for calculating the effective ‎thermal conductivity of nanofluids. The proposed model ‎includes the effects of nanoparticles and thermal conductivity ‎base fluid.We will focus on experimental of the volume ‎concentration parameter and temperature on thermal ‎conductivity, nano-fluid combination and Multi-Walled ‎Carbon nanotubes-Oxide / Copper-paid deionized Water. T...

متن کامل

Toward nanofluids of ultra-high thermal conductivity

The assessment of proposed origins for thermal conductivity enhancement in nanofluids signifies the importance of particle morphology and coupled transport in determining nanofluid heat conduction and thermal conductivity. The success of developing nanofluids of superior conductivity depends thus very much on our understanding and manipulation of the morphology and the coupled transport. Nanofl...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 6  شماره 2

صفحات  85- 93

تاریخ انتشار 2019-10-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023